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First framing statement:

“Mixed models” is a term often used as a surrogate of any kind of analysis that takes into account correlation
between measurements. However, in this document we will make reference specifically to the method that
is an extension of simple and multiple regression. As this label might be confusing and even misleading,
researchers should always confirm what type of the analysis is performed by softwares proclaiming to run
“mixed models”.

Summary

Case study construction

Linear regression: review and ground rules

Linear mixed models: an introduction

Generalized linear models: flexible tools

Generalized linear mixed models: an introduction

First: Quick scan on R proficiency

Libraries:
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# Install packages only if you have not already

#install.packages("tidyverse",
# "truncnorm",
# "gtsummary",
# "psych",
# "ggplot2",
# "ggpubr",
# "dplyr",
# "broom",
# "tidyr",
# "lme4",
# "sjPlot",
# "lmertest",
# "performance"
# )

# Loading libraries

library(tidyverse)# simulated data
library(truncnorm)# N distribution simulated (rtruncnorm)
library(gtsummary)# Summary tables (tbl_summary)
library(psych)# for matrix of scatter plots
library(ggplot2)# additional figures
library(ggpubr)# for combined plots
library(dplyr)# for %>%
library(broom)# for augment
library(tidyr)# reformatting data set (pivot_longer)
library(lme4)# mixed models
library(sjPlot)# tab_model, nice output
library(lmerTest)# P-values in mixed models
library(performance)

Steps that we will skip but that should be always taken into account:

1) This study answers a pertinent question that follows a theoretical rationale.

2) The design of the study should be able to answer the question and the statistical analysis should have
been discussed with a statistician or the like while writing the protocol.

3) The sampling was made in accordance to the objectives and the generalizability intended.

Let us start!
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Case study construction

Background

Omayra Sánchez, 1982

Nevado del Ruiz
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Armero, 2022

A research group is very interested in evaluating the impact of experiencing a catastrophic event on the
severity of symptoms and the changes of such severity throughout time in adults diagnosed with depression.

The classification of the severity was done with the PHQ-9.

Several measurements were made for each individual in different time points.

Armero has 200 000 inhabitants and 12 000 individuals have depression (6% prevalence).

This is a simulated scenario, so let us create a population with certain characteristics (a.k.a, variables).

# We establish a seed to obtain everytime the same results
set.seed(14)

# We create a dataset of the population of armero
population <- data.frame(phq9_baseline=round(rtruncnorm(n=12000, a=1, b=27, mean=13,

sd=6),0),
condition=sample(c("Non-exposed","Exposed"),12000, replace = T,

prob = c(0.5,0.5)),
sex=sample(c("Female","Male"),12000, replace = T,

prob = c(0.5,0.5)),
age_baseline=round(rtruncnorm(n=12000, a=12, b=90, mean=50, sd=25),0),
neighbourhood=sample(c("Paloquemao","Vanier","The heights","Montmartre"),

12000, replace = T, prob =c(rep(0.25,4))),
education=sample(c("School","No education"), 12000, replace = T,

prob = c(0.5,0.5)),
phq9_M1=round(rtruncnorm(n=12000, a=0, b=27, mean=12, sd=6),0),
phq9_M2=round(rtruncnorm(n=12000, a=0, b=27, mean=11, sd=6),0),
phq9_M3=round(rtruncnorm(n=12000, a=0, b=27, mean=10, sd=6),0))

# We create some tendencies in the data (essentially, females, exposed and
# two neighborhoods increase PHQ-9)
population[population$condition=="Non-exposed" &

population$phq9_baseline>4,]$phq9_baseline <-
population[population$condition=="Non-exposed" &

population$phq9_baseline>4,]$phq9_baseline-4
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population[population$phq9_M1=="Non-exposed" & population$phq9_M1>4,]$phq9_M1 <-
population[population$phq9_M1=="Non-exposed" & population$phq9_M1>4,]$phq9_M1-4

population[population$phq9_M2=="Non-exposed" & population$phq9_M2>4,]$phq9_M2 <-
population[population$phq9_M2=="Non-exposed" & population$phq9_M2>4,]$phq9_M2-4

population[population$phq9_M3=="Non-exposed" & population$phq9_M3>4,]$phq9_M3 <-
population[population$phq9_M3=="Non-exposed" & population$phq9_M3>4,]$phq9_M3-4

population[population$condition=="Exposed" &
population$phq9_baseline<27,]$phq9_baseline <-

population[population$condition=="Exposed" &
population$phq9_baseline<27,]$phq9_baseline+0

population[population$condition=="Exposed" &
population$phq9_M1<27,]$phq9_M1 <-

population[population$condition=="Exposed" &
population$phq9_M1<27,]$phq9_M1+1

population[population$condition=="Exposed" &
population$phq9_M2<27,]$phq9_M2 <-

population[population$condition=="Exposed" &
population$phq9_M2<27,]$phq9_M2+0

population[population$condition=="Exposed" &
population$phq9_M3<27,]$phq9_M3 <-

population[population$condition=="Exposed" &
population$phq9_M3<27,]$phq9_M3+0

population[population$sex=="Female",]$phq9_baseline <-
population[population$sex=="Female",]$phq9_baseline+
round(rtruncnorm(n=nrow(population[population$sex=="Female",]),

a=3, b=7, mean=5,sd=1))

population[population$sex=="Female",]$phq9_M1 <-
population[population$sex=="Female",]$phq9_M1+
round(rtruncnorm(n=nrow(population[population$sex=="Female",]),

a=3, b=7, mean=5,sd=1))

population[population$sex=="Female",]$phq9_M2 <-
population[population$sex=="Female",]$phq9_M2+
round(rtruncnorm(n=nrow(population[population$sex=="Female",]),

a=2, b=6, mean=4,sd=1))

population[population$sex=="Female",]$phq9_M3 <-
population[population$sex=="Female",]$phq9_M3+
round(rtruncnorm(n=nrow(population[population$sex=="Female",]),

a=2, b=6, mean=4,sd=1))

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_baseline <-

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_baseline+
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round(rtruncnorm(n=nrow(population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]),
a=3, b=7, mean=5,sd=1))

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_M1 <-

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_M1+

round(rtruncnorm(n=nrow(population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]),
a=3, b=7, mean=5,sd=1))

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_M2 <-

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_M2+

round(rtruncnorm(n=nrow(population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]),
a=2, b=6, mean=5,sd=1))

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_M3 <-

population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]$phq9_M3+

round(rtruncnorm(n=nrow(population[population$neighbourhood=="Monmartre"|
population$neighbourhood=="The heights",]),
a=2, b=6, mean=5,sd=1))

population$phq9_baseline[population$phq9_baseline>27] <- 27
population$phq9_M1[population$phq9_M1>27] <- 27
population$phq9_M2[population$phq9_M2>27] <- 27
population$phq9_M3[population$phq9_M3>27] <- 27

After this chunk of code we count with our population. This would represent the “truth”, seldom available
to the researcher. In this case, we can corroborate our estimates (more details below).

What researchers usually do is sample a part of the population. If this is done properly (a.ka., in a probabilistic
and pertinent manner), the sample is a good representative of the population and the statistics are good
estimators of the population parameters.

We are going to skip the sample size calculation, but. . . well, you know. Also, eligibility criteria, but also
a think to consider. In the following chunk of code we sample in a stratified manner: 100 individuals that
were exposed to the natural disaster and 100 individuals that were not.

# Sampling procedure, every individual has the same probability of being sampled.
sample_armero <-

rbind(population[population$condition=="Exposed",]
[sample(nrow(population[population$condition=="Exposed",]), 100),],

population[population$condition=="Non-exposed",]
[sample(nrow(population[population$condition=="Non-exposed",]), 100),])

Sample exploration

First we want to check how the exposure relates to the outcome of interest.
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# The categorical variables are described as relative frequencies
# (proportions) and continuous with the median and the IQR.
tbl_summary(sample_armero, by=c("condition"))

Characteristic Exposed, N = 100 Non-exposed, N = 100
phq9_baseline 17 (12, 20) 14 (10, 18)
sex
Female 56 (56%) 44 (44%)
Male 44 (44%) 56 (56%)
age_baseline 49 (36, 64) 49 (34, 66)
neighbourhood
Montmartre 26 (26%) 17 (17%)
Paloquemao 28 (28%) 30 (30%)
The heights 18 (18%) 33 (33%)
Vanier 28 (28%) 20 (20%)
education
No education 54 (54%) 56 (56%)
School 46 (46%) 44 (44%)
phq9_M1 16 (11, 22) 17 (10, 20)
phq9_M2 14 (9, 18) 14 (10, 18)
phq9_M3 13.0 (9.0, 17.0) 14.0 (9.0, 18.0)

This describes the dependent variable according to exposure, but nothing else. Only how the exposure is
distributed in the rest of variables can be observed.

In this line, we would like to see how the continuous variable distributes in those levels. To do so, we will
use visual aids.

# change names just for the figure
sample_armero2 <- sample_armero
names(sample_armero2) <- gsub("phq9_","",names(sample_armero2))
# plots matrix
pairs.panels(sample_armero2,

method = "pearson", # correlation method
hist.col = "#00AFBB",
density = TRUE, # show density plots
ellipses = FALSE, # do not show ellipses
cex.cor = 1, # change correlation text size
cex=0.4, # change point size
)
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rm(sample_armero2)

In a more thorough way, we can check the distribution of our variable interest in the different levels of the
exposure variable. There is a lot to discuss about the proper test to utilize according to the nature of the
variables of interest.

# create histograms for baseline and follow-up measurements
p1 <- ggplot(sample_armero, aes(x=phq9_baseline))+

geom_histogram(aes(y =..density..),col="blue", fill = "#0099F8",binwidth = 1) +
geom_density(color = "black", fill = "purple", alpha = 0.3) +
labs(title='Distribution in baseline',

x='PHQ-9', y='Density')+
theme_classic()+

theme(legend.position = c(.95, .95),legend.justification = c("right", "top"),
legend.box.just = "right",

legend.margin = margin(6, 6, 6, 6),legend.title = element_text(face = "bold"))+
guides(fill=guide_legend(title="New Legend Title"))+

facet_wrap(~condition)

p2 <- ggplot(sample_armero, aes(x=phq9_M1))+
geom_histogram(aes(y =..density..),col="blue", fill = "#0099F8",binwidth = 1) +
geom_density(color = "black", fill = "purple", alpha = 0.3) +
labs(title='Distribution in M1',

x='PHQ-9', y='Density')+
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theme_classic()+
theme(legend.position = c(.95, .95),legend.justification = c("right", "top"),

legend.box.just = "right",
legend.margin = margin(6, 6, 6, 6),legend.title = element_text(face = "bold"))+
guides(fill=guide_legend(title="New Legend Title"))+

facet_wrap(~condition)

p3 <- ggplot(sample_armero, aes(x=phq9_M2))+
geom_histogram(aes(y =..density..),col="blue", fill = "#0099F8",binwidth = 1) +
geom_density(color = "black", fill = "purple", alpha = 0.3) +
labs(title='Distribution in M2',

x='PHQ-9', y='Density')+
theme_classic()+

theme(legend.position = c(.95, .95),legend.justification = c("right", "top"),
legend.box.just = "right",

legend.margin = margin(6, 6, 6, 6),legend.title = element_text(face = "bold"))+
guides(fill=guide_legend(title="New Legend Title"))+

facet_wrap(~condition)

p4 <- ggplot(sample_armero, aes(x=phq9_M3))+
geom_histogram(aes(y =..density..),col="blue", fill = "#0099F8",binwidth = 1) +
geom_density(color = "black", fill = "purple", alpha = 0.3) +
labs(title='Distribution in M3',

x='PHQ-9', y='Density')+
theme_classic()+

theme(legend.position = c(.95, .95),legend.justification = c("right", "top"),
legend.box.just = "right",

legend.margin = margin(6, 6, 6, 6),legend.title = element_text(face = "bold"))+
guides(fill=guide_legend(title="New Legend Title"))+

facet_wrap(~condition)

ggarrange(p1,p2,p3,p4, ncol = 2)
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Checking normality through statistical tests (Shapiro-Wilk test):

lapply(sample_armero[sapply(sample_armero, is.numeric)],shapiro.test)

## $phq9_baseline
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.98191, p-value = 0.01119
##
##
## $age_baseline
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.97828, p-value = 0.003412
##
##
## $phq9_M1
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.97611, p-value = 0.001728
##
##
## $phq9_M2
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.98617, p-value = 0.04785
##
##
## $phq9_M3
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.98754, p-value = 0.07679
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Finally, we add an identifier to each individual (participant). This will be fundamental for the mixed models
analysis. The importance will be evident below.

sample_armero$id <- c(1:nrow(sample_armero))

Linear regression: review and ground rules

At this point, we can start answering some of the questions that the research group had:

What is the effect of exposure on the severity of depressive symptoms?

To evaluate this behavior we could simply run a t-test, which can be considered equivalent to the simple
linear regression or a one-way ANOVA if we were to add a covariate with more than three levels. Nonetheless,
as the data becomes more complex, using regression analysis has several advantages over the other methods.

In this case, as we will follow the way to eventually reach mixed models, we will stick with regression analysis
since the beginning.

Theory

We want to describe the relationship between two variables. To do so, generally, you can have a good idea of
what model could fit (represent) the data looking at a scatter plot. These plots will however be more useful
for two numeric variables. When we explore the relationship between a categorical independent variable and
a numeric continuous dependent variable we will not see a cloud of points but rather two columns like in the
case below.

ggplot(sample_armero, aes(x=as.numeric(factor(sample_armero$condition,
levels = c("Non-exposed","Exposed")))

, y=phq9_baseline))+
geom_point()+
geom_smooth(method=lm)+
labs(title = "PHQ-9 according to the exposure to natural disaster",

y = "PHQ-9 at baseline", x = "Exposure to volcanic eruption")+
scale_x_continuous(expand = c(1,1),breaks = c(1,2))+
theme_classic2()
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As can be seen, despite the categorical (dichotomous) nature of the relationship, a line can “in average”
summarize adequately the distribution between the two levels. A second case, would be the description of
the relationship between two numeric variables, for instance PHQ-9 at baseline and age at baseline.

ggplot(sample_armero, aes(x=age_baseline, y=phq9_baseline))+
geom_point()+
geom_smooth(method=lm)+
labs(title = "PHQ-9 according to the age",

y = "PHQ-9 at baseline", x = "Age in years")+
scale_x_continuous(expand = c(0,0),breaks = c(0,20,40,60,80,100))+
theme_classic2()
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We can appreciate there seems to be no relationship between the age and the PHQ-9 of the individuals.
Indeed, we are testing visually if a line could be a good model of this relationship. If we were to consider
such model, then there are a couple of assumptions that we, well, must assume. It is like flat earthers: if a
model (a representation) of earth is flat they need to assume a LOT of things for it to be true. For instance,
that something else gradually hides distancing bodies from bottom to top.

Well, linear models have an advantage over this kind of claims. In mathematics, lines are pretty simply
described. A simple equation can give you all the information you need to draw such line.

Mathematical equation of a line:

y = mx + b

m is the slope and b the intecept (the value of y when x = 0)

Now, in statistical jargon, they decided that it would be better to write it in a more sophisticated way:

Statistical transform of the mathematical equation of a line:

y = β0 + β1x

Why? Because in statistics we deal with inference (conclusions about populations from samples), and so the
parts of the equation are no longer only mathematical descriptors dwelling in the mathematical world. They
try to represent something in the real world, philosophical stuff. . . that is fundamental! This is at the very
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basis of inferential statistics and for these to be able to represent reality a lot of assumptions have to be,
well, assumed. But do not worry, many tools and strategies exist that allow us to test if the assumptions
seem to be met by our models. For now, its important to understand that these letters, these specific letters
and symbols, are representations of real phenomena in a population.

Going back to linear regression. We have a line that can be described by an equation and that seems to
describe adequately a relationship between two variables, but not perfectly! In mathematics a line might
be enough to described such relationship, one variable x determines y, but this is the real world! PHQ-9,
a surrogate of depressive symptomatology is not only determined by a another variable. Well, we do not
know exactly these other aspects, but the data exhibits it, so we have to include it in our equation.

Population regression line:

Y = β0 + β1X1 + E

The E term represents everything that describes the behavior of y and that is not explained by the exposure
x. This part is often labeled as the random component of the model, whereas β0 + β1 is labeled as the
deterministic component.

If everything is clear there is only one last thing to discuss before going into the line-drawing part: the above
equation corresponds to phenomena in the real world, but usually we do not have access to this precious
information. Instead, we use samples to try to aproximate this equation and generate conclusions at the
population level. That is why the equation that we actually work on is the following:

Sample regression line:

Ŷ = β̂0 + β̂1X1 + ϵ̂

Other way to describe the sample regression line:

Ŷ = b0 + b1X1 + e

These are the actual values that we see in our data (sample), but they are so much more. They are estimates
of the true parameters of the population and whatever formula used to get their value is an estimator.
This means that the values will change from sample to sample, building something called a sampling
distribution. A creature that surely deserves its own pdf file. Know for now that is this property that
allows us to make inferences (a.k.a, hypothesis testing and confidence intervals estimation).

So, apparently a line can give us a lot of information, but so many lines from which to choose. How do we
select the line that better describes a particular relationship? What is the main characteristic that this line
should have if it were to describe the relationship? Well, intuitively it should cross most points of the scatter
plot or at least be the closest as possible to every point.

set.seed(26)
ggplot(data.frame(x=rnorm(12,0,1),y=rnorm(12,0,1),

z=c(rep("A",2),rep("B",2),
rep("C",2),rep("D",2),
rep("E",2),rep("F",2))),

aes(x=x, y=y)) +
geom_point(size=3) +
stat_smooth(aes(x=x, y=y, group = z),method = "lm", se=FALSE, fullrange = T, size=0.7)+
geom_smooth(aes(x=x,y=y), method = "lm", se=FALSE, fullrange = T, size=1, color="red")+
geom_label(aes(x = 1.5, y = -1.38, label = "Best line?"), size=4.4,colour="white",fill = "red")+
theme_classic()
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Visually, we can create an approximate line, its relatively easy but inaccurate. Fortunately, stats enable us
to choose the best line according to more stringent criteria. Remember the error term that we were talking
about a couple of paragraphs above? Let us dig into that. Let us take the graph above and suppose we are
trying to see the relationship between two variables x and y, you choose what they represent, both numeric
though. Some lines cross one, two, three points and some others are closer to some points. But, which?
Good lord, which?

set.seed(26)
data.frame(x=rnorm(12,0,1),y=rnorm(12,0,1),

z=c(rep("A",2),rep("B",2),
rep("C",2),rep("D",2),
rep("E",2),rep("F",2))) %>%

lm(y ~ x, data = .) %>%
augment() %>%
ggplot(aes(x=x, y=y)) +

geom_point(size=3) +
geom_smooth(aes(x=x,y=y), method = "lm", se=FALSE, fullrange = T, size=1, color="red")+
geom_label(aes(x = 1.5, y = -1.38, label = "Best line!"), size=4.4,colour="white",

fill = "red")+
geom_segment(aes(xend = x, yend = .fitted)) +
theme_classic()
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These segments that you can observe represent the distance between the observed data from the sample and
their corresponding fitted values from the line. This distance is called the error (residual), ϵ or e in our
formula. Indeed, the best fitting line will have the least error, but how to find this mathematically instead
of measuring every segment with a ruler?

We could sum all the error segments, but the sum would be 0 (negatives annul positives). One way out is
to sum the squared errors, a value known as the sum squared error (SSE).

SSE =
n∑

i=1
(Yi − Ŷi)2 =

n∑
i=1

(Yi − β̂0 + β̂1Xi1)2

Indeed, statisticians, made fancy experiments and trials to solve for the β̂0 and β̂1 that minimizes the SSE.
This method is known as the least square estimation method and the line that results from it the least
square regression line.

Least squares estimators:
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That is it, we have our line. Now, inferences!!

Remember, we said that this values would change from sample to sample creating a fantastic beast. Well, we
can estimate some characteristic of the distribution of this parameters and decide if the estimate observed
in our data is likely to be seen in such a sample were the corresponding parameter to be 0 (no linear
relationship). This is called a Wald test. This is the first p-value that we will talk about.

For the second one, we need another measure. In general, an univariate description of a variable can give
you a lot of information. The mean is already telling you a lot if the variable is symmetric (i.e, gaussian).
That is the minimum information that you count only with the variable, so one wants to know, not only if
the relationship exists (β1 is different from 0), but if your model is actually useful. Interestingly, with only
one independent variable, these two p-values would be equal. But let us talk about the second.

set.seed(26)
data.frame(x=rnorm(12,0,1),y=rnorm(12,0,1),

z=c(rep("A",2),rep("B",2),
rep("C",2),rep("D",2),
rep("E",2),rep("F",2))) %>%

lm(y ~ x, data = .) %>%
augment() %>%
ggplot(aes(x=x, y=y)) +

geom_hline(yintercept=0,color="blue", size=1)+
geom_point(size=3) +
geom_smooth(aes(x=x,y=y), method = "lm", se=FALSE, fullrange = T, size=1, color="red")+
geom_label(aes(x = 1.5, y = -1.38, label = "Best line!"), size=4.4,colour="white",

fill = "red")+
geom_label(aes(x = -1.8, y = 1.4, label = "Only the mean"), size=4.4,colour="white",

fill = "blue")+
geom_segment(aes(xend =x , yend = 0), color="blue") +

geom_segment(aes(xend = x, yend = .fitted), color="red") +
theme_classic()
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With the mean we are already explaining some of the variation, but then, how much of the variation in y is
better understood thanks to x. This measure will correspond to the segments between the mean of y and
the fitted line ŷi.The sum of this squared distance is known as the sum squared about the regression
(SSR). And,

SSR =
n∑

i=1
(ŷi − ȳi)2 =

n∑
i=1

(β̂0 + β̂1Xi1 − ȳi)2

Great! Now, all the variability in y is its numerator of the variance: The total sum of squares. And
intuitively:

SST = SSE + SSR

so,

SST − SSE

SST
= SSR

SST
= R2

This is also called R2. . .

Finally, just like in ANOVA we test with an F statistic taking into account the degrees of freedom:

F = Mean squares about the regression

Mean squares about the error
=

(SST −SSE)
k

SSE
n−k−1
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If F is big enough we can reject the null hypothesis, claiming that the model, a.k.a, the regression line,
explains more than 0.

This is it. You know simple linear regression now. But life is not that easy. We have to check certain things
before claiming truth or discovery. In this case we have to check if the assumptions hold and the behavior
of residuals will light the path. They have to be normal, have a constant variance in the different values of
x, be linear and NOT BE CORRELATED or better yet, BE INDEPENDENT from one another. We
already saw them. . . residual plot.

For another time. . . Let us run the linear model in R.

# the only line of code you need to run it
#summary(lm(phq9_baseline~condition,sample_armero))
# but is good practice to save it in an object
model_simple_lm <- lm(phq9_baseline~condition,sample_armero)
summary(model_simple_lm)

##
## Call:
## lm(formula = phq9_baseline ~ condition, data = sample_armero)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.30 -4.30 0.57 4.57 13.57
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.3000 0.6147 26.517 < 2e-16 ***
## conditionNon-exposed -2.8700 0.8693 -3.301 0.00114 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 6.147 on 198 degrees of freedom
## Multiple R-squared: 0.05218, Adjusted R-squared: 0.04739
## F-statistic: 10.9 on 1 and 198 DF, p-value: 0.001141

Usually, people like to factor the other way around.

model_simple_lm_2 <- lm(phq9_baseline~factor(condition,
levels = c("Non-exposed","Exposed")),

sample_armero)
summary(model_simple_lm_2)

##
## Call:
## lm(formula = phq9_baseline ~ factor(condition, levels = c("Non-exposed",
## "Exposed")), data = sample_armero)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.30 -4.30 0.57 4.57 13.57
##
## Coefficients:
## Estimate
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## (Intercept) 13.4300
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 2.8700
## Std. Error
## (Intercept) 0.6147
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.8693
## t value Pr(>|t|)
## (Intercept) 21.848 < 2e-16
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 3.301 0.00114
##
## (Intercept) ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 6.147 on 198 degrees of freedom
## Multiple R-squared: 0.05218, Adjusted R-squared: 0.04739
## F-statistic: 10.9 on 1 and 198 DF, p-value: 0.001141

First: Interpretation
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#plot(model_simple_lm_2)

Honorable mention: Transformations

model_simple_lm_age <- lm(phq9_baseline~age_baseline
,sample_armero)

summary(model_simple_lm_age)

##
## Call:
## lm(formula = phq9_baseline ~ age_baseline, data = sample_armero)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.8368 -3.9099 0.1492 4.1329 12.1803
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.942504 1.270269 11.763 <2e-16 ***
## age_baseline -0.001555 0.023854 -0.065 0.948
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 6.314 on 198 degrees of freedom
## Multiple R-squared: 2.145e-05, Adjusted R-squared: -0.005029
## F-statistic: 0.004247 on 1 and 198 DF, p-value: 0.9481

#explore model
plot(fitted(model_simple_lm_age), residuals(model_simple_lm_age))+

abline(a = 0,b = 0)
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Example of multiple regression

model_simple_mlm <- lm(phq9_baseline~factor(condition,
levels = c("Non-exposed","Exposed"))+

age_baseline+neighbourhood,sample_armero)
summary(model_simple_mlm)

##
## Call:
## lm(formula = phq9_baseline ~ factor(condition, levels = c("Non-exposed",
## "Exposed")) + age_baseline + neighbourhood, data = sample_armero)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.6401 -3.8231 0.1057 3.8550 12.2462
##
## Coefficients:
## Estimate
## (Intercept) 11.064626
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 3.804242
## age_baseline -0.003196
## neighbourhoodPaloquemao 1.046132
## neighbourhoodThe heights 6.380014
## neighbourhoodVanier 0.530448
## Std. Error
## (Intercept) 1.447319
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## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.816612
## age_baseline 0.021631
## neighbourhoodPaloquemao 1.148828
## neighbourhoodThe heights 1.190506
## neighbourhoodVanier 1.190251
## t value Pr(>|t|)
## (Intercept) 7.645 9.44e-13
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 4.659 5.90e-06
## age_baseline -0.148 0.883
## neighbourhoodPaloquemao 0.911 0.364
## neighbourhoodThe heights 5.359 2.36e-07
## neighbourhoodVanier 0.446 0.656
##
## (Intercept) ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed ***
## age_baseline
## neighbourhoodPaloquemao
## neighbourhoodThe heights ***
## neighbourhoodVanier
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 5.662 on 194 degrees of freedom
## Multiple R-squared: 0.2121, Adjusted R-squared: 0.1918
## F-statistic: 10.44 on 5 and 194 DF, p-value: 6.897e-09

Linear mixed models: an introduction

First let us reshape the dataset:

# reshape database
sample_armero_longf <- pivot_longer(sample_armero,

c(phq9_baseline,phq9_M1,
phq9_M2,phq9_M3),names_to = "timepoint",

values_to = "PHQ9")

Let us plot:

# Base template: time_num for numeric and time_f for factor
ggplot(sample_armero_longf, aes(x = timepoint, y = PHQ9))+
geom_point(aes(fill=factor(id)), pch=21, size=2, stroke=1, show.legend = F)+
geom_line(aes(group=id), col=factor(sample_armero_longf$id))+

geom_smooth(aes(group=condition,color=condition), se=T, method = lm)+
theme_minimal(base_size = 12)+#theme_classic() or
#theme(axis.text.x = element_text(angle = 40, vjust = 1, hjust=1))+
labs(title="Loess smoothening of the PHQ9",

color="Condition", y="PHQ9", x= "Measurements")
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Loess smoothening of the PHQ9

multpiple_viol <- lm(PHQ9~factor(condition,
levels = c("Non-exposed","Exposed")),

sample_armero_longf)

summary(multpiple_viol)

##
## Call:
## lm(formula = PHQ9 ~ factor(condition, levels = c("Non-exposed",
## "Exposed")), data = sample_armero_longf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.0375 -4.0850 -0.0375 4.9150 12.9150
##
## Coefficients:
## Estimate
## (Intercept) 14.0850
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.9525
## Std. Error
## (Intercept) 0.3114
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.4404
## t value Pr(>|t|)
## (Intercept) 45.234 <2e-16
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 2.163 0.0308
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##
## (Intercept) ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 6.228 on 798 degrees of freedom
## Multiple R-squared: 0.005829, Adjusted R-squared: 0.004583
## F-statistic: 4.679 on 1 and 798 DF, p-value: 0.03084

Show error for not adding RE:

mix_null <- lmer(PHQ9~
# fixed effects
1 +
# random effects
(1|id), sample_armero_longf)

summary(mix_null)

## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
## lmerModLmerTest]
## Formula: PHQ9 ~ 1 + (1 | id)
## Data: sample_armero_longf
##
## REML criterion at convergence: 5131.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.15665 -0.69478 -0.00377 0.68416 2.33447
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 10.44 3.232
## Residual 28.56 5.344
## Number of obs: 800, groups: id, 200
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 14.5612 0.2965 199.0000 49.11 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

icc(mix_null)

## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.268
## Unadjusted ICC: 0.268

mix1 <- lmer(PHQ9~
# fixed effects
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factor(condition,levels = c("Non-exposed","Exposed")) +
# random effects
(1|id), sample_armero_longf)

summary(mix1)

## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
## lmerModLmerTest]
## Formula: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) +
## (1 | id)
## Data: sample_armero_longf
##
## REML criterion at convergence: 5128.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.18052 -0.69976 0.01481 0.68074 2.37091
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 10.30 3.210
## Residual 28.56 5.344
## Number of obs: 800, groups: id, 200
##
## Fixed effects:
## Estimate
## (Intercept) 14.0850
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.9525
## Std. Error
## (Intercept) 0.4177
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.5907
## df t value
## (Intercept) 198.0000 33.724
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 198.0000 1.613
## Pr(>|t|)
## (Intercept) <2e-16 ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.108
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr)
## f(,l=c("N-" -0.707

library(lmerTest)

mix1 <- lmer(PHQ9~
# fixed effects
factor(condition,levels = c("Non-exposed","Exposed")) +
# random effects
(1|id), sample_armero_longf)

summary(mix1)
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## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
## lmerModLmerTest]
## Formula: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) +
## (1 | id)
## Data: sample_armero_longf
##
## REML criterion at convergence: 5128.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.18052 -0.69976 0.01481 0.68074 2.37091
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 10.30 3.210
## Residual 28.56 5.344
## Number of obs: 800, groups: id, 200
##
## Fixed effects:
## Estimate
## (Intercept) 14.0850
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.9525
## Std. Error
## (Intercept) 0.4177
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.5907
## df t value
## (Intercept) 198.0000 33.724
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 198.0000 1.613
## Pr(>|t|)
## (Intercept) <2e-16 ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.108
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr)
## f(,l=c("N-" -0.707

Let us add time as a fixed effect:

sample_armero_longf$time_num <- as.numeric(factor(sample_armero_longf$timepoint))-1

mix2 <- lmer(PHQ9~
# fixed effects
factor(condition,levels = c("Non-exposed","Exposed")) +
time_num+
# random effects
(1|id), sample_armero_longf)

summary(mix2)

## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
## lmerModLmerTest]
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## Formula: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) +
## time_num + (1 | id)
## Data: sample_armero_longf
##
## REML criterion at convergence: 5113.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.13614 -0.69467 -0.01393 0.69202 2.33629
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 10.49 3.239
## Residual 27.82 5.274
## Number of obs: 800, groups: id, 200
##
## Fixed effects:
## Estimate
## (Intercept) 15.1133
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.9525
## time_num -0.6855
## Std. Error
## (Intercept) 0.4869
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.5907
## time_num 0.1668
## df t value
## (Intercept) 350.6733 31.042
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 198.0000 1.613
## time_num 599.0000 -4.110
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.108
## time_num 4.51e-05 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) f(l=c"
## f(,l=c("N-" -0.607
## time_num -0.514 0.000

Let us add the other fixed effects of interest:

mix3 <- lmer(PHQ9~
# fixed effects
factor(condition,levels = c("Non-exposed","Exposed")) + time_num+
sex+neighbourhood+education+age_baseline+
# random effects
(1|id), sample_armero_longf)

summary(mix3)

## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
## lmerModLmerTest]

27



## Formula: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) +
## time_num + sex + neighbourhood + education + age_baseline + (1 | id)
## Data: sample_armero_longf
##
## REML criterion at convergence: 4943.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.43112 -0.76233 -0.01591 0.74872 2.58853
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 0.4239 0.6511
## Residual 27.8203 5.2745
## Number of obs: 800, groups: id, 200
##
## Fixed effects:
## Estimate
## (Intercept) 16.206373
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 1.165481
## time_num -0.685500
## sexMale -4.773840
## neighbourhoodPaloquemao 0.462052
## neighbourhoodThe heights 4.942984
## neighbourhoodVanier -0.557341
## educationSchool 0.376695
## age_baseline -0.004872
## Std. Error
## (Intercept) 0.789768
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.394732
## time_num 0.166794
## sexMale 0.387696
## neighbourhoodPaloquemao 0.553215
## neighbourhoodThe heights 0.571441
## neighbourhoodVanier 0.571519
## educationSchool 0.388208
## age_baseline 0.010387
## df
## (Intercept) 236.282375
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 191.999962
## time_num 598.999951
## sexMale 191.999962
## neighbourhoodPaloquemao 191.999962
## neighbourhoodThe heights 191.999962
## neighbourhoodVanier 191.999962
## educationSchool 191.999962
## age_baseline 191.999962
## t value Pr(>|t|)
## (Intercept) 20.520 < 2e-16
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 2.953 0.00354
## time_num -4.110 4.51e-05
## sexMale -12.313 < 2e-16
## neighbourhoodPaloquemao 0.835 0.40464
## neighbourhoodThe heights 8.650 2.04e-15
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## neighbourhoodVanier -0.975 0.33069
## educationSchool 0.970 0.33310
## age_baseline -0.469 0.63957
##
## (Intercept) ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed **
## time_num ***
## sexMale ***
## neighbourhoodPaloquemao
## neighbourhoodThe heights ***
## neighbourhoodVanier
## educationSchool
## age_baseline
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) f(l=c" tim_nm sexMal nghbrP nghbTh nghbrV edctnS
## f(,l=c("N-" -0.327
## time_num -0.317 0.000
## sexMale -0.298 0.120 0.000
## nghbrhdPlqm -0.389 0.092 0.000 0.059
## nghbrhdThhg -0.420 0.175 0.000 0.025 0.560
## neghbrhdVnr -0.423 0.019 0.000 0.039 0.541 0.528
## educatnSchl -0.195 -0.021 0.000 0.001 0.062 -0.020 -0.012
## age_baselin -0.629 -0.002 0.000 -0.002 -0.096 -0.024 0.046 -0.043

Let us compare deviance:

mix3_reduced <- lmer(PHQ9~
# fixed effects
factor(condition,levels = c("Non-exposed","Exposed")) + time_num+
sex+neighbourhood+
# random effects
(1|id), sample_armero_longf)

summary(mix3_reduced)

## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
## lmerModLmerTest]
## Formula: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) +
## time_num + sex + neighbourhood + (1 | id)
## Data: sample_armero_longf
##
## REML criterion at convergence: 4937
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.48814 -0.78229 -0.02358 0.76114 2.58025
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 0.3906 0.625
## Residual 27.8203 5.274
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## Number of obs: 800, groups: id, 200
##
## Fixed effects:
## Estimate
## (Intercept) 16.1403
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 1.1730
## time_num -0.6855
## sexMale -4.7747
## neighbourhoodPaloquemao 0.4064
## neighbourhoodThe heights 4.9478
## neighbourhoodVanier -0.5397
## Std. Error
## (Intercept) 0.5872
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.3938
## time_num 0.1668
## sexMale 0.3868
## neighbourhoodPaloquemao 0.5485
## neighbourhoodThe heights 0.5699
## neighbourhoodVanier 0.5696
## df t value
## (Intercept) 285.0742 27.488
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 193.9999 2.979
## time_num 598.9999 -4.110
## sexMale 193.9999 -12.344
## neighbourhoodPaloquemao 193.9999 0.741
## neighbourhoodThe heights 193.9999 8.682
## neighbourhoodVanier 193.9999 -0.948
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.00326 **
## time_num 4.51e-05 ***
## sexMale < 2e-16 ***
## neighbourhoodPaloquemao 0.45960
## neighbourhoodThe heights 1.58e-15 ***
## neighbourhoodVanier 0.34454
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) f(l=c" tim_nm sexMal nghbrP nghbTh
## f(,l=c("N-" -0.448
## time_num -0.426 0.000
## sexMale -0.401 0.120 0.000
## nghbrhdPlqm -0.589 0.093 0.000 0.059
## nghbrhdThhg -0.590 0.174 0.000 0.025 0.563
## neghbrhdVnr -0.533 0.019 0.000 0.040 0.550 0.530

Likelihood ratio test:

anova(mix3_reduced, mix3)

## refitting model(s) with ML (instead of REML)

## Data: sample_armero_longf
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## Models:
## mix3_reduced: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) + time_num + sex + neighbourhood + (1 | id)
## mix3: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) + time_num + sex + neighbourhood + education + age_baseline + (1 | id)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mix3_reduced 9 4952.7 4994.9 -2467.4 4934.7
## mix3 11 4955.6 5007.1 -2466.8 4933.6 1.1678 2 0.5577

Let us add random slope of time:

mix4 <- lmer(PHQ9~
# fixed effects
factor(condition,levels = c("Non-exposed","Exposed")) + time_num+
sex+neighbourhood+
# random effects
(1+time_num|id), sample_armero_longf)

## boundary (singular) fit: see help(’isSingular’)

summary(mix4)

## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
## lmerModLmerTest]
## Formula: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) +
## time_num + sex + neighbourhood + (1 + time_num | id)
## Data: sample_armero_longf
##
## REML criterion at convergence: 4936.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.50505 -0.77248 -0.01557 0.75670 2.54028
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## id (Intercept) 1.2306 1.1093
## time_num 0.0686 0.2619 -1.00
## Residual 27.6144 5.2549
## Number of obs: 800, groups: id, 200
##
## Fixed effects:
## Estimate
## (Intercept) 16.1576
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 1.1374
## time_num -0.6855
## sexMale -4.7649
## neighbourhoodPaloquemao 0.4050
## neighbourhoodThe heights 4.9349
## neighbourhoodVanier -0.5425
## Std. Error
## (Intercept) 0.5920
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.3955
## time_num 0.1672
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## sexMale 0.3885
## neighbourhoodPaloquemao 0.5509
## neighbourhoodThe heights 0.5724
## neighbourhoodVanier 0.5721
## df t value
## (Intercept) 276.8888 27.295
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 223.5497 2.876
## time_num 489.3933 -4.100
## sexMale 223.5497 -12.264
## neighbourhoodPaloquemao 223.5497 0.735
## neighbourhoodThe heights 223.5497 8.622
## neighbourhoodVanier 223.5497 -0.948
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## factor(condition, levels = c("Non-exposed", "Exposed"))Exposed 0.00442 **
## time_num 4.84e-05 ***
## sexMale < 2e-16 ***
## neighbourhoodPaloquemao 0.46303
## neighbourhoodThe heights 1.22e-15 ***
## neighbourhoodVanier 0.34400
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) f(l=c" tim_nm sexMal nghbrP nghbTh
## f(,l=c("N-" -0.446
## time_num -0.433 0.000
## sexMale -0.400 0.120 0.000
## nghbrhdPlqm -0.587 0.093 0.000 0.059
## nghbrhdThhg -0.588 0.174 0.000 0.025 0.563
## neghbrhdVnr -0.531 0.019 0.000 0.040 0.550 0.530
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help(’isSingular’)

anova(mix3_reduced, mix4)

## refitting model(s) with ML (instead of REML)

## Data: sample_armero_longf
## Models:
## mix3_reduced: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) + time_num + sex + neighbourhood + (1 | id)
## mix4: PHQ9 ~ factor(condition, levels = c("Non-exposed", "Exposed")) + time_num + sex + neighbourhood + (1 + time_num | id)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mix3_reduced 9 4952.7 4994.9 -2467.4 4934.7
## mix4 11 4956.5 5008.1 -2467.3 4934.5 0.2168 2 0.8973

Good bye, for now.
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